Serine Hydroxymethyltransferase ShrA (PA2444) Controls Rugose Small-Colony Variant Formation in Pseudomonas aeruginosa
نویسندگان
چکیده
Pseudomonas aeruginosa causes many biofilm infections, and the rugose small-colony variants (RSCVs) of this bacterium are important for infection. We found here that inactivation of PA2444, which we determined to be a serine hydroxymethyltransferase (SHMT), leads to the RSCV phenotype of P. aeruginosa PA14. In addition, loss of PA2444 increases biofilm formation by two orders of magnitude, increases exopolysaccharide by 45-fold, and abolishes swarming. The RSCV phenotype is related to higher cyclic diguanylate concentrations due to increased activity of the Wsp chemosensory system, including diguanylate cyclase WspR. By characterizing the PA2444 enzyme in vitro, we determined the physiological function of PA2444 protein by relating it to S-adenosylmethionine (SAM) concentrations and methylation of a membrane bound methyl-accepting chemotaxis protein WspA. A whole transcriptome analysis also revealed PA2444 is related to the redox state of the cells, and the altered redox state was demonstrated by an increase in the intracellular NADH/NAD+ ratio. Hence, we provide a mechanism for how an enzyme of central metabolism controls the community behavior of the bacterium, and suggest the PA2444 protein should be named ShrA for serine hydroxymethyltransferase related to rugose colony formation.
منابع مشابه
Relationship of cell surface hydrophobicity with biofilm formation and growth rate: A study on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli
Objective(s): This study was designed to determine the relationship of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli isolates in multispecies biofilms and their individual phenotypic characters in biofilm consortia. Materials and Methods: The subject isolates were recovered from different food samples and identified on the basis of growth on differential and selective med...
متن کاملPseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments
Pseudomonas aeruginosa causes devastating infections in immunocompromised individuals. Once established, P. aeruginosa infections become incredibly difficult to treat due to the development of antibiotic tolerant, aggregated communities known as biofilms. A hyper-biofilm forming clinical variant of P. aeruginosa, known as a rugose small-colony variant (RSCV), is frequently isolated from chronic...
متن کاملComplete Genome Sequence of Highly Adherent Pseudomonas aeruginosa Small-Colony Variant SCV20265
The evolution of small-colony variants within Pseudomonas aeruginosa populations chronically infecting the cystic fibrosis lung is one example of the emergence of adapted subpopulations. Here, we present the complete genome sequence of the autoaggregative and hyperpiliated P. aeruginosa small-colony variant SCV20265, which was isolated from a cystic fibrosis (CF) patient.
متن کاملGelatinous Variants of Pseudomonas Aeruginosa.
Pseudomonas aeruginosa is known to show considerable variation in colony form and physiological properties, including pigment production. Gaby (1946) has recently reported biochemical and other observations on certain "basic colony types." Mucoid variants of P. aeruginosa have been described by Sonnenschein (1927) and by Schwarz and Lazarus (1947); Fiala (1941) has described the appearance of "...
متن کاملThe rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae.
Vibrio cholerae, the causative agent of cholera, can undergo phenotypic variation generating rugose and smooth variants. The rugose variant forms corrugated colonies and well-developed biofilms and exhibits increased levels of resistance to several environmental stresses. Many of these phenotypes are mediated in part by increased expression of the vps genes, which are organized into vps-I and v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2018